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Abstracl. Using the a c t  solutions of two-dimensional (2D) hydrogen-like donors Do in 
a magnetic field, a nwel trial function is wnslrucled Tor ZD D- ions in lhe Beld. The 
field dependence of the binding energies and the eleclron Conrlalion effect on them are 
studied and compared with other resulu. 

In recent years, there have been many investigations of the electronic structure and 
properties of neutral shallow donors Do in GaAs-Ga,-,AI,As multiple-quantum- 
well (MQW) structures with and without doping in strong magnetic fields. Although 
negative-donor centres D-, i.e. neutral shallow donors that bind an additional elec- 
tron, have already been observed in bulk elemental semiconductors for more than 20 
years (Gershenzon et a1 1971, Thornton and Honig 1973, Thniguchi et a1 1975, Norton 
1976), they have been identified in quantum-well structures for only about 2 years 
(Huant et a1 1990). D- centres can be expected to form rcadily in intentionally doped 
GaAs-Ga,-,Ai,As MQW structures owing to electron transfer from the Ga,-,AI,As 
barrier to neutral donors located in the GaAs well. Far-inlrarcd magnetotransmission 
and magnetophotoconductivity measurements on the MQW structures have revealed 
photoionization transitions from the D- centres to successive Landau levels (Huant 
et a1 1990). It has been shown that, for D- in quantum-well structures, the quasi-two- 
dimensional (920) nature results in a dramatic enhancement of the binding energy 
with respect to the 3D case. The effective-mass model has been applied to the D- 
and Do centres in a magnetic field in both the Q ~ D  and the 3D cases, and the model 
has been solved by a diffusion quantum Monte Carlo method (Pang and Louie 1990). 
For the 3D case, comparison of the results with the experimental data (Huant et a1 
1990) and other calculations (Natori and Kamimura 1978, Larsen 1979a, b) shows 
that electron correlation effects are very important to obtain better results. For the 
Q2D case, there is a large increase in binding energies over those of the 3 0  case. 
It shows that the binding energies of D- centres in a magnetic field are strongly 
dependent on the confined dimensionality, i.e. the dimensions and the strength of the 
magnetic field. Therefore, it is interesting to know the limits of the binding energies 
in a magnetic field in the pure 2D case and the electron correlation effect on them. 

The energy levels of a ZD Do centre in a magnetic field can be calculated us- 
ing approximation Or numerical methods such as the perturbation theory, the WKB 
approximation (Akhoto and Hasegawa 1967), the two-point Pad6 approximation 
(MacDonald and Ritchie 1986) and numerical integral methods (Duggan 1988, Whit- 
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taker and Elliott 1988, Edelstein et af 1989). However, analytically the series formulae 
of wavefunctions with exact quantum levels obtained numerically for a ZD Do centre 
in a magnetic Reld have been given by Zhu et uf (1990). In this paper, based on 
the exact solutions, we introduce a novel trial function for ZD D- ground states in a 
magnetic fleld. Then, the field dependence of the binding energies of a ZD D- centre 
and the electron correlation effect are studied and compared with other results. 

The effective Hamiltonian of a 2D D- centre in a magnetic field perpendicular to 
the 2D plane can be written as follows: 

H =  H(1,W) t H(z ,W)  +z/lpl - p z l  (1) 

H ( i , W  = -[(l/~i)(a/B~i)(~id/B~;) t (I/P?)L;?I +(y2/4)p?+yLi  -2n'/~i 
(2) 

where H ( i ,  W) is the effective Hamiltonian of the zv Do centre with electron i 
in the presence of the field, pi is the displacement of electron i from the centre, 
pf = zt t yf. W = 1 and y is the magnetic field in cffective atomic units. The third 
term on the RHs in (1) is the interaction between two elcctrons. We have assumed 
an infinitely massive ion, ignored the Zeeman spin energy, which does not affect the 
binding energies, and have taken all energies and lengths in units of the effective 
Rydberg Ryd' and the effective Bohr radius a*, respectively. Li in (2) is the angular 
momentum of electron i along the field direction. We should point out that the total 
angular momentum of the 2D D- centre is equal to L, + L, and the total magnetic 
quantum number can be well defined for the D- states. 

'Ihe 20 D- states in a magnetic field cannot be solved exactly, and approximation 
methods should be used. For determining the electronic structure and the binding en- 
ergies of the ground states in the magnetic field, we introduce a new trial wavefunction 
which includes the electron correlation effect and approaches the Chandrasekhar-type 
trial function at y = 0. It is as follows: 

* with 

Q = A(1 t CP12) [11 (~1 ,P , )11 (~ , ,Pz )  + !NXl>P?)11(X,?P,)l (3) 

where C, A, and A, are variational parameters, A is thc normalization constant, and 
$(Ai,&) is the ground-state eigenfunction of H ( i ,  X i )  which is equal to H ( i , W )  
of (2) as Ai = W .  We should point out that @(A,,  p ; )  can be obtained exactly with 
the use of different series forms in different regions of the radial equation (2hu el ul 
1%). Therefore, the variational energy E ( D - )  is given by 

E(D-) = min ( Q / H l @ )  (4) 
A1X.C 

where 

(QIHIW = (QIH(l,Al)lQ) + (QIH(Z,A* ) lQ)  

t (\VP/lPl - p z l -  (2 - Z X , ) / P , -  (2  - W / P ? l Q ) .  (5) 
The first and semnd terms on the RHS are calculated partly analytically and partly 
numerically. The third term can be calculated numerically. Then, the binding cnergy 
of the D- ground state is as follows: 

EB(D-) = E(Do) + y - E ( D - )  = 2 y  - EB(Do) - E ( D - )  (6) 
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where E(Do) is the lowest level of the Hamiltonian of (2), i.e. the Do ground-state 
energy in the magnetic field, which can be solved exactly as mentioned above, and 
%(Do) is the binding energy of the neutral donor. 

We have performed a numerical calculation for the ground states of ZD Do and 
2D D- centres in magnetic fields and obtained the ground-state levels and the corre- 
sponding energies as shown in table 1. At zero magnetic field, the binding energies 
of ZD Do and ZD D- centres are equal to 4 Ryd and 0.450 Ryd*, respectively. The 
E,(D-) shows a dramatic increase, by a factor of 8.69, compared with the binding 
energy (0.0518 Ryd') of 3D D- centres obtained by Chandrasekhar (1944). It is 
reasonable that the value of the binding energy of 2D D- centres is larger than those 
obtained by the experiment (Haunt el a1 1990) and the calculation (Pang and Louie 
1990) in quantum-well structures. It is interesting to point out that the value is close 
to the 'exact' result (0.480 Ryd') obtained by Phelps and Bajaj (1983), and that the 
ratio (8.69) of 2D EB(D-) (0.450 Ryd') to 3D EB(D-) (0.0518 Ryd') obtained by 
using Chandrasekhar-type trial functions at y = 0 is about the same as that (8.64) 
obtained by using 'exact' ZD EB(D-) (0.480 Ryd') and 3D E,(D-) (0.0555 Ryd') 
(Perkeris 1958, 1962). As shown in table 1, the binding cnergies of both 2D D- and 
ZD Do ground states increase with increasing magnetic ficld y. However, the binding 
energy of 2D D- centres in lower magnetic fields increases with increasing y much 
more rapidly than in higher magnetic fields, and both 2v D- and 2D Do binding 
energies increase with increasing 7 at about the samc rate in higher magnetic fields, 
i.e. the so-called magnetic freeze-out effect. This feature has been explained by the 
fact that the extension of the outer orbital in a 2~ D- ion sharply decreases with 
increasing field even in a weak-field regime, compared with the extension of a neutral 
donor orbital which decreases rather slowly. In table 1, it is clearly seen that the 
ratio R, of E,(D-) to EB(Do) increases from 0.113 to about 0.3. The starting and 
limiting values of R, are larger than those (about 0.05 and 0.2) of 3D D- centres 
obtained by Natori and Kamimura (1978). This mea* that the freezeout effect of 
D- centres depends on the confined dimensionality and that R, and its limit increase 
with increasing dimensionality. 

Tnble I. Ground-sfafe energies E(D") and E(D-) and binding energies &(Do) and 
Ee(D-)  of m DO and D- centres in magnetic Belds 7. RI is the ratio of EB(D-) 
to EB(DO), and Rz is the ratio of AEB(D-) to EB(D-) where AEB(D-) isequal 
to EB(D-) minus the binding energy obtained by using the trial function without the 
polarization term (see the ten). 

$(Do) E(D-) EB(DO) EB(D-) 
r (RW) (RYd*) (Ryd.) CRY!') Ri Rz 

0 -4 -4.4501 4 0.450 0.113 0.330 
1 -3.8961 -4.0211 4.896 1.125 0.230 0.279 
3 -3.3370 -20916 6.332 1.760 0.278 0.252 
5 -2.4521 0.3696 7.452 2.178 0.292 0.219 
10 0.3694 7.4608 9.631 2.908 0302 0.165 

In order to study the electron correlation effect in D- centres in magnetic fields, 
we have also calculated the ground-state levels and binding energies using the trial 
function without the polarization term in plz(  C = 0) in (3). As shown in table 1, the 
ratio of R, of the binding energy difference due to omission of the correlation term 
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to the binding energy decreases monotonically from 0.330 to 0.165 when y increases 
from 0 to 10. It is worthwhile pointing out that the ratio R, of 2D D- centres is 
smaller than that of the corresponding 3 0  D- centres and, particularly at y = 0, the 
R, difference between 2D and 3D cases is larger and equal to about 0.15. The above 
discussion means that, as increasing confinement (increasing the strength of magnetic 
field or reducing the dimensionality) causes one electron with a spin to approach 
close to another with the opposite spin and have less room to avoid each other in 
a D- centre, the electron correlation effect on the wavefunction and binding energy 
can become weak. 

In conclusion, we have for the first time used the new trial function, which has a 
Chandrasekhar-type structure and consists of the exact eigenfunctions of the Hamil- 
tonian H ( i ,  A), and obtained the ground-state levels and binding energies of 2D D- 
centres in magnetic fields. The calculated results have shown that the binding ener- 
gies, the freeze-out effect and the electron correlation etfect are strongly dependent 
on the confinement, i.e. the strength of magnetic field and the  dimensionality. This 
will be useful for understanding the electronic propertics in low-dimension systems 
and for designing some devices in the future. Finally, it is worthwhile pointing out 
that, using the new kind of trial funclion as a part of the total trial function of D- 
Centres in quantum-well structures, the quantum levels and binding energies can be 
calculated correctly and compared with other calculations and experiments. This work 
is in progress. 
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